If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=-16t^2+70t
We move all terms to the left:
45-(-16t^2+70t)=0
We get rid of parentheses
16t^2-70t+45=0
a = 16; b = -70; c = +45;
Δ = b2-4ac
Δ = -702-4·16·45
Δ = 2020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2020}=\sqrt{4*505}=\sqrt{4}*\sqrt{505}=2\sqrt{505}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{505}}{2*16}=\frac{70-2\sqrt{505}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{505}}{2*16}=\frac{70+2\sqrt{505}}{32} $
| -(8y+)=5*7y-133 | | -6.3-3x=5.1 | | -6-20=-2x+4(1-3x) | | (x^2-7*x+11)^(X^2-13*x+42)=1 | | 10u-39=3u+10 | | 2s-32+s-13=180 | | 2s-33+s-13=180 | | 4x-8=x+52 | | 2m-1=m=6 | | 2t-33=3t-58 | | 2u-20+2u-52=180 | | 19b=b+18 | | a*12=-3 | | p*9=9 | | 9x=2(×+7) | | x3/8=18 | | c+94=3c+34 | | 4y-8=120 | | -(5x-4)-3x-5)+10=-9(x-1)-(3x+9)+3 | | 12p-99=p | | 2s-18+s=180 | | x+75+x=775 | | (E^2x)-8x+1=0 | | 5x-9x+2=x-6+8 | | 7x-2x+6=1-5+11 | | x+21+3x-44=180 | | 14400=1200p-9p^2 | | 10x+100+12=11x-12 | | 2(x-4)+2x=4(x+6)-32 | | 3x+18+3x-2=46-3x+33 | | 2y-27=y | | 3x^2/5-8=0 |